

# **22**

# IRRAGGIAMENTO ELETTROMAGNETICO LUCE, COLORE

#### Concetti fondamentali:

- Irraggiamento elettromagnetico, tipi e impieghi dell'irraggiamento.
- Concetto di colore corpo illuminato e illuminante. Composizione dei colori.
- Concetto di luce, velocità di propagazione della luce, sorgenti di luce
- Luce monocromatica e policromatica.
- Corpo opaco, trasparente e translucido.
- Raggi infrarossi e ultravioletti.
- Riflessione, rifrazione e dispersione della luce.
- Riflessione totale, la fibra ottica.

#### Formule elementari:

| • | Legge della riflessione: | $\alpha = \alpha'$ , | $(r_i, r_r, \vec{n}) \in \rho$ |
|---|--------------------------|----------------------|--------------------------------|
|---|--------------------------|----------------------|--------------------------------|

• Indice di rifrazione assoluto: 
$$n = \frac{c}{v}$$

• Indice di rifrazione relativo: 
$$n_{12} = \frac{n_2}{n_1} = \frac{v_1}{v_2}$$

• Legge della rifrazione: 
$$n_{12} = \frac{\sin \alpha}{\sin \beta} = \frac{v_1}{v_2} = \frac{n_2}{n_1}$$

• Angolo limite 
$$(v_1 < v_2)$$
:  $n_{12} = \sin \alpha_L = \frac{v_1}{v_2} = \frac{n_2}{n_1}$ 

• Energia: 
$$E = h \cdot f$$



#### Esercizi:

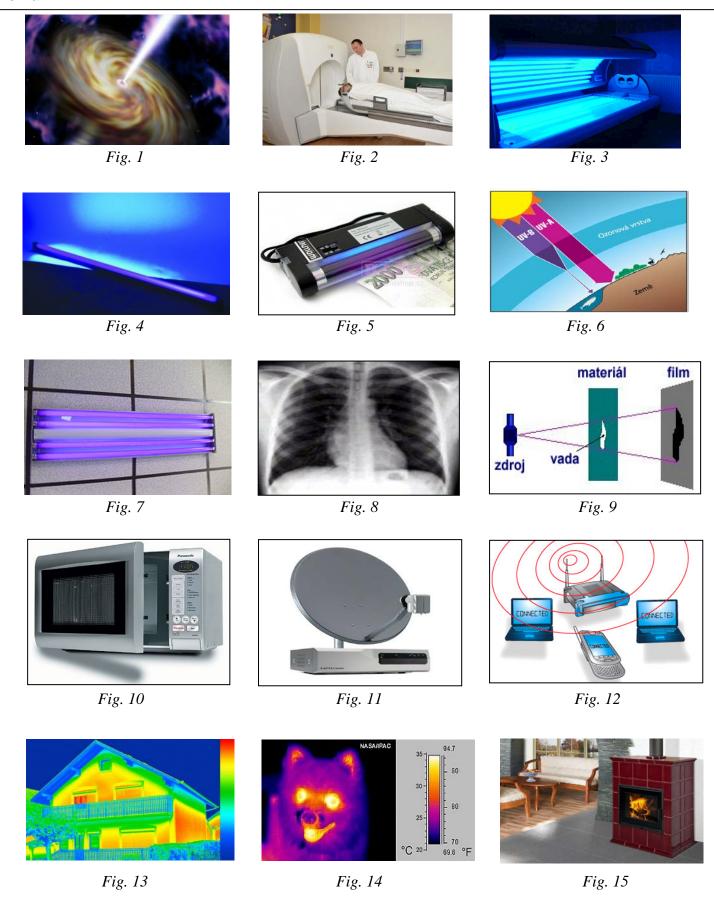
1. Per quale angolo di incidenza forma il raggio rifratto con il raggio riflesso l'angolo retto? Calcolare per la rifrazione aria – mezzo con n = 1,6.

[58°]

2. Un raggio luminoso monocromatico proveniente dall'aria penetra in un mezzo materiale trasparente avente indice di rifrazione pari a 1,732. Per quale direzione del raggio incidente gli angoli di incidenza e di rifrazione sono complementari? Quanto sarebbe l'angolo limite del mezzo considerato?

 $[60^{\circ}; 35,3^{\circ}]$ 

3. La velocità di propagazione della luce in un mezzo è 2,033·10<sup>8</sup> m/s. Determinare l'angolo limite del mezzo considerato rispetto all'aria.


 $[42,6^{\circ}]$ 

4. Diodo LED emette la luce di lunghezza d'onda 0,75  $\mu$ m a causa di un passaggio di un elettrone tra la banda di conduzione e quella di valenza. Determinare il valore energetico tra le due bande. ( $h = 6.6 \cdot 10^{-34} \, \mathrm{Js}$ )



5. Sapendo la lunghezza d'onda della luce rossa (780 nm) che si propaga nel vuoto determinare la sua frequenza e il suo periodo.







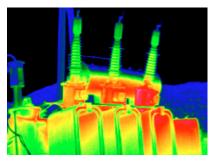



Fig. 16



Fig. 17

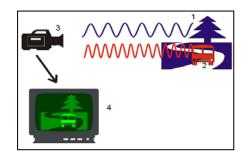



Fig. 18



Fig. 21



Fig. 19



Fig. 20



Fig. 22



Fig. 23



Fig. 26

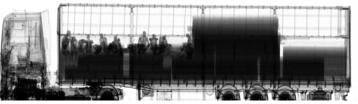



Fig. 24



Fig. 25



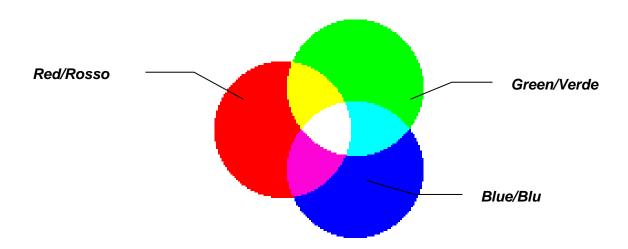
Fig. 27



Fig. 28



#### COMPOSIZIONE E SCOMPOSIZIONE DEI COLORI


I principi che regolano questi due modi "di vedere i colori" sono detti: composizione e scomposizione. La composizione e la scomposizione dei colori sono regolate da due diversi principi:

# la sintesi additiva la sintesi sottrattiva

La prima si riferisce al colore sotto forma di luce, la seconda al colore come pigmento.

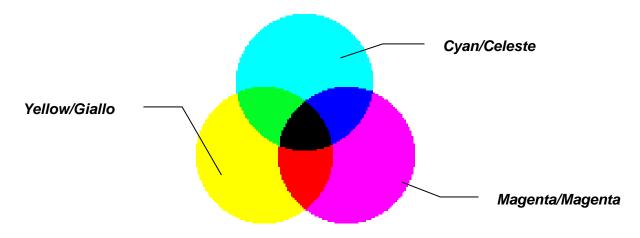
#### La sintesi additiva:

La luce bianca contiene al suo interno tutti gli altri colori, come è possibile evidenziare attraverso l'utilizzo di un prisma. I colori primari però, sono essenzialmente tre: rosso, verde e blu, spesso indicati con le iniziali dei loro nomi inglesi (R - Red, G - Green, B - Blue).



Questo è il principio di base del funzionamento degli schermi televisivi e dei monitor per computer, che sono appunto definiti schermi *RGB*. Il termine primari indica che i tre colori sommati in uguali proporzioni generano una luce bianca, mentre se sono miscelati tra loro a due a due creano altri colori, detti secondari:

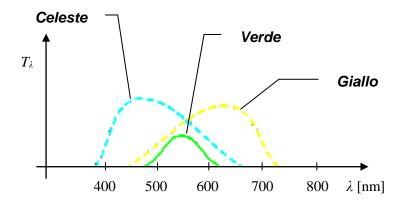
| Primario: |   | Primario: |   | Secondario: |  |
|-----------|---|-----------|---|-------------|--|
| Rosso     | + | Verde     | = | Giallo      |  |
| Rosso     | + | Blu       | = | Magenta     |  |
| Verde     | + | Blu       | = | Celeste     |  |


Ogni colore primario ha un complementare, dato dalla somma degli altri due primari:



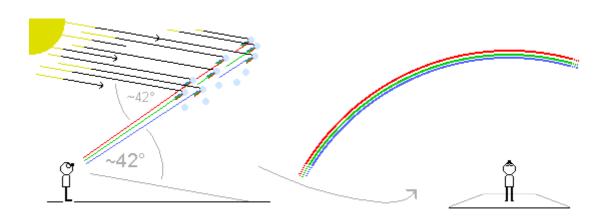
| Primario: | Complementare: |  |  |  |
|-----------|----------------|--|--|--|
| Rosso     | Celeste        |  |  |  |
| Verde     | Magenta        |  |  |  |
| Blu       | Giallo         |  |  |  |

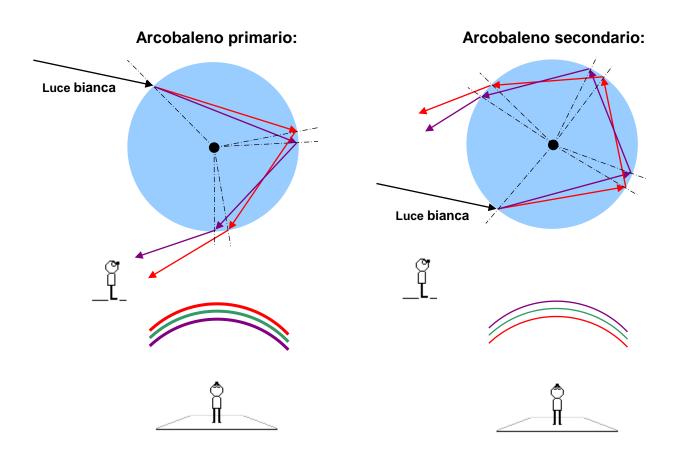
#### La sintesi sottrattiva:


La sintesi sottrattiva si applica sostanzialmente nella riproduzione dei colori tramite la stampa, questa sintesi è quella che si applica agli inchiostri. I pigmenti depositati sulla carta, colpiti dalla luce bianca, ne assorbono alcune componenti e ne riflettono altre: per esempio, l'inchiostro magenta assorbe tutte le componenti della luce tranne quella magenta.



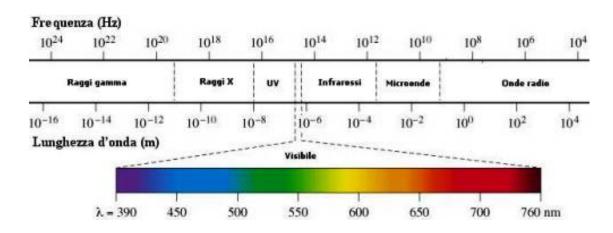
I colori primari della sintesi sottrattiva non sono altro che i colori secondari della sintesi additiva, e cioè ciano, magenta e giallo. Anche in questo caso si usano spesso le iniziali inglesi (C - Cyan, M - Magenta, Y - Yellow).

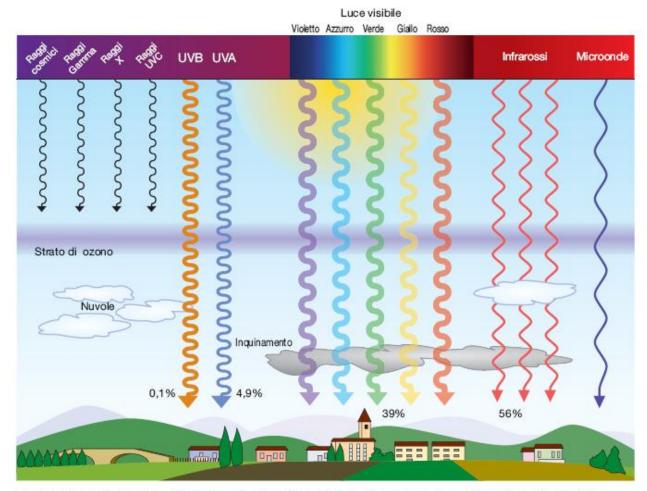

Questi colori, miscelati tra loro in proporzioni diverse, ottengono tutti gli altri colori, sommando tutti e tre al massimo dell'intensità si ottiene il nero.


#### Luce bianca passa attraverso filtro celeste e giallo:






# **ARCOBALENO**








#### SPETTRO DELLE ONDE ELETTROMAGNETICHE





Rappresentazione delle radiazioni che raggiungono la superficie terrestre



# **RIFLESSIONE TOTALE**

## Fibre ottiche (cavo tecnico)



## Endoscopia

